Digital Nutrition - Making Athletics Safer

Unlocking the Promise of Personalized Nutrition 

By Fredric Abramson, Ph.D., S.M., Esq. 

Copyright 2018

People wonder why one dish can be so appealing to one person and turn off another person? Or why their neighbor’s weight loss diet didn’t work for them. These reflect the fact that people metabolize the same food at different rates. Just as our physical capabilities are individualized, so it is with nutrition. So what can happen when consumers have insights into what nutrients best match their genetic needs? 

There’s a growing commercial interest in DNA testing, and consumers are increasingly fascinated by what a swab of saliva can reveal. But there’s more to genetics than simply ancestry. Unwinding and translating one’s genetic makeup can also unlock a path toward peak health, helping consumers make more informed food choices for improved fitness, mental and physical performance, weight management, and overall well-being.

The emergence of genetically-personalized nutrition, also known as nutrigenomics or nutrigenetics, represents a huge potential, not just as it relates to the improved health of consumers, but also for food landscape and healthcare as we know it. Consumers will be using their genetic data to better understand nutrient profiles that best match their genetic map.

The adage “you are what you eat” will now be “you eat what you are.” Personalized nutrition represents potential. The potential for consumers to make smarter nutritional choices for themselves and for their family. The potential to transform the customer experience in the process restaurant and the food service areas. Food companies can increase brand loyalty with new and improved products that dovetail with their customers’ genetic makeup. Imagine smartphone-friendly QR codes or barcodes on restaurant menus that customers can scan to identify better choices. We are entering a new dimension in food and nutrition that is as revolutionary as refrigeration was a century ago

Increasing customer control over their nutrition choices can change the face of healthcare as we know it. Genetics empowers consumers to be proactive about their health and well-being, rather than reactive. Everyone will have the potential to find the nutrient mixes that let their bodies perform more optimally, and that meet their personal metabolic profiles and nutritional needs.

Major food companies have started moving into the space. Campbell's initiated a project in San Francisco where they use a person's DNA profile to prepare customized meals delivered to the customer’s door. Nestle is investing millions in nutrigenomic research to create foods configured around persons genetic profile.

The shopping experience itself is changing. Amazon Go knows what shoppers pull off the shelf and automatically charges it to their Amazon account. The Internet of Things technology can have food products and the store “talking” to shoppers as they shop. Food companies are experimenting with 3-D printing to produce customized foods, possibly opening a whole new chapter to take out ordering.

Thousands of scientific studies document the relationships linking genetic variations with how the body processes and uses nutrients. Everyone knows that people react differently to foods, and their nutrient content. Here are a few examples that highlight some common differences.

Sugar content and obesity is a hot topic. Some people seem to have a sugar craving. But is this craving DNA driven, or learned? Researchers found that the variations in the GLUT2 gene (glucose transporter type 2) impact sugar consumption.[1] Those with one or two copies of one variant consume 1.1 and 1.9 more pounds of sugar each month than those with no copies. Interestingly, there was no effect of age, and no differences in the amount of fat, protein or alcohol consumed. In our own pilot study, one participant, when told she did not have the gene for increased sugar consumption, grasped that her “sweet tooth” was probably learned because her parents didn’t let her eat sweets when she was a child.

Another obesity related area related is dietary fat. The Framingham heart study found that a variant of the APOA5 (apolipoprotein A5) gene was associated with increased BMI when the dietary fat intake exceeded 30% of total calories.[2] Below 30%, there was no difference in the risk of being overweight.

Appropriate vitamin and mineral levels are important to maintain good health. The HFE gene helps regulate the amount of iron in the body. One variant is associated with the condition known as hemochromatosis (excess iron) when the person carries both copies. The heterozygous person, with one copy, has high normal iron levels. For this person, providing high levels of iron supplementation could elevate iron levels above normal. The impact of excess iron on athletes can be negative, and lower their performance.[3]

These examples highlight the opportunity for each person to have her/his own “best” nutrient profile, based in part on their genetics. Of course other factors play a role, such as activity levels, age, medications, and overall health status. Genes don’t operate in a vacuum.

Still skeptical about genetically-personalized nutrition’s potential? It’s worth remembering that every day, people listen to weather forecasts, knowing that weather forecasting is far from perfect but better than simply waiting for the weekend to find out if it’s going to rain.

Fredric Abramson is an adjunct professor of Biotechnology at Johns Hopkins, and is founder of Digital Nutrition. His Ph.D. in Human Genetics and Population Planning is from the University of Michigan, and his Masters of Management is from MIT where he was an Alfred P. Sloan Fellow.

[1] Genetic variant in the glucose transporter type 2 is associated with higher intakes of sugars in two distinct populations, Karen M. Eny, Thomas M. S. Wolever, Bénédicte Fontaine-Bisson and Ahmed El-Sohemy, 2008, Physiol. Genomics 33: 355-360
[2] APOA5 gene variation modulates the effects of dietary fat intake on body mass index and obesity risk in the Framingham Heart Study, Dolores Corella et al, Journal of Molecular Medicine, Volume 85, Number 2 / February, 2007 119-128
[3]  Iron supplementation in athletes – first do no harm, Heinz Zoller and Wolfgang Vogel, Nutrition, Volume 20, Issues 7-8, July-August 2004, 615-619.